Signed Poset Polytopes

Max Hlavacek
UC Berkeley

Matthias Beck
San Francisco State University

What's to come....

- Posets geometrically
- Generalizations of posets
- Signed posets (Reiner, 1993)
- Coxeter cones (Stembridge, 2007)
- Bringing things together: Signed order polytopes

Order Polytopes

Let Π be a poset on n elements.
Order polytope $-\mathcal{O}(\Pi)$ of Π is the subset of \mathbb{R}^{Π} given by:

$$
\begin{gathered}
\mathcal{O}(\Pi)=\left\{\phi \in \mathbb{R}^{\Pi}: 0 \leq \phi(p) \leq 1 \text { for all } p \in \Pi\right. \text { and } \\
\phi(a) \leq \phi(b) \text { when } a \leq b\}
\end{gathered}
$$

Order cone $-\mathcal{O}(\Pi)$ of Π is the subset of \mathbb{R}^{Π} given by:

$$
\mathcal{O}(\Pi)=\left\{\phi \in \mathbb{R}^{\Pi}: \phi(a) \leq \phi(b) \text { when } a \leq b\right\}
$$

From poset to order polytope (classical case)

- The dimension of $\mathcal{O}(\Pi)$ is the number of elements of Π.
- The vertices of $\mathcal{O}(\Pi)$ correspond to the filters of Π.
- The facets correspond to the maximal/ minimal elements and the cover relations of the poset.
- Volume can be computed from number of
 linear extensions.

Why do we care about order polytopes?

- We know a lot about $\mathcal{O}(\Pi)$, but they can still be complicated.
- Volume is computationally hard to compute.
- Potential place to look for examples of polytopes with nice properties.
- Gorenstein ...
- An entry point to some open problems!
- unimodality....

Ehrhart theory detour

Let P be a d-dimensional lattice polytope.

Ehrhart polynomial: $\operatorname{ehr}_{P}(n)=\left|n P \cap \mathbb{Z}^{d}\right|$ This is indeed a polynomial in n. (Ehrhart 1962)

Ehrhart series:

$$
E h r_{P}(z):=1+\sum_{n \geq 1} e h r_{P}(n) z^{n}=\frac{h_{0}^{*}+h_{1}^{*} z+\cdots+h_{d+1}^{*} z^{d}}{(1-z)^{d+1}}
$$

We call $\left(h_{0}^{*}, \ldots h_{d}^{*}\right)$ the h^{*}-vector of P.

Gorenstein polytopes

Let P be a d-dimensional lattice polytope and P° be its interior.
P is Gorenstein if and only if there exists a positive integer r such that:

- $(r-1) P^{\circ} \cap \mathbb{Z}^{d}=\emptyset$
- $\left|r P^{\circ} \cap \mathbb{Z}^{d}\right|=1$
- $\left|t P^{\circ} \cap \mathbb{Z}^{d}\right|=\left|(t-r) P \cap \mathbb{Z}^{d}\right|$ for all integers $t>r$

Gorenstein order polytopes

- A lattice polytope is Gorenstein if and only if its h^{*}-polynomial has symmetric coefficients.
- The order polytope of a poset P is Gorenstein if and only if P is graded. (Hibi, Stanley)

Unimodality Questions

Unimodality: $a_{0} \leq a_{1} \leq \cdots \leq a_{k} \geq \cdots \geq a_{d}$

Big Question: Do ___ have unimodal h^{*}-vectors?

Possible candidates for \qquad :

- IDP polytopes
- Polytopes that admit a unimodular triangluation
- Order polytopes

All of these questions are still open!

Signed Posets (Reiner, 1993)

Type A root system:

$$
\begin{gathered}
\left\{e_{i}-e_{j}: 1 \leq i \neq j \leq n \subset \mathbb{R}^{n}\right\} \\
P=\left\{e_{4}-e_{3}, e_{3}-e_{1}, e_{3}-e_{2}, e_{4}-e_{1}, e_{4}-e_{2}\right\}
\end{gathered}
$$

Type B root system:

$$
\begin{aligned}
& \left\{ \pm e_{i} \pm e_{j}: 1 \leq i \neq j \leq n \subset \mathbb{R}^{n}\right\} \cup\left\{ \pm e_{i}: 1 \leq i \leq n\right\} \\
& \mathrm{P}=\left\{\mathrm{e}_{1}+\mathrm{e}_{2},-\mathrm{e}_{1}+\mathrm{e}_{2}, \mathrm{e}_{2}\right\}
\end{aligned}
$$

Fischer representation

Signed posets on [n] can also be represented as classical posets on $\{-n,-(n-1), \ldots, 0, \ldots, n-1, n\}$. (Fischer, 93)

Coxeter Cones (Stembridge 2007)

- Introduced coxeter cones - formed from subsets of any root system.
- Determined exactly when the magentah- vectors of these cones are symmetric

Signed Order Polytopes

Definition

The order polytope of a signed poset $P, \mathcal{O}(P)$, is given by intersecting the cube $[-1,1]^{n}$ with the halfspaces given by $\langle\alpha, x\rangle \geq 0$ for all $\alpha \in P$.

(1) (2)

From signed poset to signed order polytope

- If P is a signed poset on [n], the dimension of $\mathcal{O}(P)$ is n
- $\mathcal{O}(P)$ can be written as the convex hull of the signed filters of P.
- The facets correspond to the signed maximal elements and the nonredundant relations of the poset.
- Volume can be computed from number of signed linear extensions.

Gorenstein example

Gorenstein signed order polytopes
non-Gorenstein signed order polytopes

$\begin{array}{lllll}1 & -1 & 2 & -2 & 0 \\ \bullet & \bullet & \bullet & \bullet & \bullet\end{array}$

Gorenstein signed order polytopes

(Implied by Stembridge) Let P be a signed poset on [n]. Then $\mathcal{O}(P)$ is Gorenstein if and only if the Fischer poset representation of P is graded.

Unimodality

Theorem (Bruns, Roemer, 2005) A Gorenstein lattice polytope P with a regular unimodular triangulation has a unimodal h^{*}-vector.

Corollary: Let P be a signed poset on [n]. Then $\mathcal{O}(P)$ has unimodal h^{*}-polynomial if the Fischer poset representation of P is graded.

Further questions

- Stanley defined chain polytopes in 1986, what is the analogue here?

Thank you all! :)

